One of the most common questions we get from prospective customers is “can I just purchase solar panels and install them myself?” The answer to this question depends on a number of factors, chief among them being the amount of time, effort, and energy that a person is willing to devote to the project. A lot of people who are considering doing the installation themselves think the process is as simple as installing some rails on their roof, mounting the panels, and running a few wires into their breaker panel. However designing and installing any photovoltaic (PV) system is vastly more complicated than that. So let’s examine everything that actually goes into properly designing and installing a solar array!

The first step is to select the type of modules, inverter(s), and racking to be used for the system. Additionally there are dozens of other components that will need to be purchased and properly configured with one another, from panel clamps, to grounding lugs, to a laundry list of electrical components.  All of these products range greatly in terms of price, quality, size, warranty coverage, and compatibility with one another. However once these items have been selected, the installation is still a long way from beginning. Before any of the materials are ordered, three things are needed: an engineer’s stamped letter, a building permit from your local authority having jurisdiction (AHJ), and approval from your utility company (assuming the system will be grid tied). In order to obtain any of these three things a set of detailed design specs must be submitted. These designs must show: the proposed location, tilt and orientation of the array, string size, wire size, inverter size, breaker size, proper grounding, wire configuration, voltage drop calculations, and production calculations, just to name a few. When it comes to configuring  a PV system an immense amount of knowledge is required not only to remain code compliant, but also to ensure the highest level of production from the system. If any one component is not properly sized or configured you could not only be losing power production, but could also be creating a potential fire hazard.

Once all the design work has been completed, the building permit issued, and approval from the utility company received, it is now time to begin the installation. If the system is being installed on a roof the person performing the installation will need to be confident that they are able to make anywhere from 50 to over 300 roof attachment points (depending on the size of the system) without creating any leaks. Hopefully the chosen racking system utilizes flashings and rubber gaskets to ensure water tightness. If quality solar panels have been selected, they should be warrantied for 25 years. Therefore it is very important that whatever style of roof attachment is being used will be capable of remaining water tight for a minimum of 25 years.  If the system is installed on the ground, heavy machinery will be required to secure the racking firmly and properly in place. Remember all work being done must be completed in accordance with designs approved by a licensed engineer, and will be inspected by the building department.

Once the racking is taken care of, the solar panels must be mounted. This is a fairly simple process, although wire management is vitally important. If wires running form the solar panels to the inverter(s) are not properly protected and secured the system may not pass inspection, and could potentially create a fire or electric shock hazard. If the system is installed on the roof there are very specific provisions in the National Electric Code (NEC) pertaining to wires carrying direct current (DC). Again if any of these provisions are not met, the system will not pass inspection and may need to be entirely redesigned.

The next step is to install the inverter(s). Assuming a string inverter has been selected, all the DC wires from the solar panels need to be properly terminated in the inverter. Whoever is performing this work will be dealing with live wires producing up to 600V in direct current. If these wires are not properly tested and terminated, they could potentially ruin an inverter worth several thousand dollars. If microinverters have been selected, the procedures for setting panels and performing wire management are completely different than they are for installing a system utilizing a string inverter. Once again proper: grounding, circuit size, wire size, conduit size, wire splicing and etc. are all paramount. The importance of attention to these details cannot be overemphasized. Not only is the overall production of the system at stake, but safety and code compliance are major concerns as well.

Next the inverter will need to be wired on the AC side. According to the NEC this phase of the installation can only be performed by a licensed master electrician. For anyone considering installing solar themselves, it is imperative that they factor in the cost of hiring an electrician to perform this work. It is also imperative that prior to reaching this phase of the installation, careful consideration has been given to where and how the PV system will be connected to the grid. Again there are dozens of potentially limiting factors that should have been addressed in the design phase of the installation. Complex upgrades to the service panel are not uncommon in terms of making the panel ready to accept solar backfeed. If this is the case, this work will also need to be performed by a licensed master electrician.

Now that the racking and modules have all been set, the wires run, the inverter installed, and the system connected to the grid, the system must be inspected. Depending on the stipulations set forth by the local AHJ, multiple inspections may be required both during and after the installation is complete. Additionally many inverters (string inverters and microinverters) come equipped with monitoring software. If this is the case, the monitoring system will need to be installed and configured with the home’s Wi-Fi network. Once this is complete and the utility company has installed a meter capable of reading the system’s power production (usually called a “Net Meter”) the installation is complete!

But wait! One thing often overlooked by do-it-yourselfers (and even some solar installers) is that utility companies often offer rebates and incentives to customers who install solar on their grid. Many utilities have different requirements for qualification, but in most cases a simple application is all that is required. If any rebates or incentives are overlooked, the system owner might be throwing away thousands of dollars in free money over the life of their system. Additionally there are important tax documents that need to be filed with the IRS for the system owner to receive their 26% federal tax credit (as of Jan. 1st, 2020).

So to answer the question of “can you install solar yourself?” the answer is yes – if you are willing to devote a large amount of time and effort to the project. The average person will need to do a tremendous amount of research before they are ready to begin the installation. Additionally they will need to be comfortable working on the roof (in the case of roof mount) or with heavy machinery (in the case of ground mount). They will need a basic to mid-range knowledge of construction, wiring, and electricity (as they pertain to solar). They will need to be willing to invest money in special tools, equipment rental, and hiring an electrician. Furthermore they will need at least one person who is willing to help them, as most phases of the project will require a minimum of two competent workers. So ultimately what the decision boils down to is a question of how much your time is worth to you. And are you willing to spend that time researching, planning, and installing all the components that go into a PV system? The final consideration is how confident you are in your ability to perform the installation at the same level of safety and quality that a professional solar contractor should be able to achieve. Ultimately, whatever you decide, you are making a great decision both financially and for the environment! So feel good… because you are doing the right thing!

Please check out our website at www.altewindandsolar.com and our Facebook page at www.facebook.com/Alt-E-Wind-Solar-Ltd-196202797091314/ or give us a call at 970-482-SOLAR(7652)